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Rapid Note

Photon-number-state generation with a single two-level atom in
a cavity: a proposal
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Abstract. A single two-level atom can be used to prepare an arbitrary photon number state (Fock state) in
a high Q cavity . The atom undergoes a controlled succession of interactions with two cavity modes. One
of them contains a coherent field. The atom transfers photons one by one from this field to the initially
empty second mode. The scheme can be extended to prepare a quantum superposition of the vacuum with
a Fock state, a highly non-classical situation. We discuss the feasibility of the experiment with our present
Rydberg-atom cavity QED set-up.

PACS. 03.65.-w Quantum mechanics – 32.80.-t Photon interactions with atoms – 42.50.-p Quantum optics

Quantum field states engineering has become a very
active domain in quantum optics. Squeezed states or sin-
gle photon Fock states are now available in various exper-
imental conditions. However, Fock states with more than
one photon have not yet been prepared. They could be
used for various applications, such as quantum cryptogra-
phy or communication [1]. The high level of control of the
matter-field interaction achieved in cavity QED [2] makes
it a very interesting background for such experiments and
various Fock state generation schemes have already been
proposed in this context.
A first approach to the generation of Fock states relies

on a quantum non demolition measurement of the photon
number, projecting the cavity state onto a photon number
state [3]. The photon number value obtained in a given
experiment is however unpredictable.
In proper conditions, a microlaser [4] or micromaser

[5] generates directly a Fock state. The micromaser, for
instance, operating in a trapping state, provides a highly
sub-Poissonian field but requires an excellent control of
dissipation, thermal noise and atomic beam fluctuations.
Other proposals use a well determined number of atoms
emitting one photon each in the cavity [6,7]. These meth-
ods require a very high detection efficiency, not achieved
experimentally yet, to determine precisely the number of
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emitting atoms. A method relying on the adiabatic emis-
sion of photons by an ensemble of atoms crossing simul-
taneously the cavity [8] suffers from the same kind of
limitation.
Proposals using a single atom escape the detection ef-

ficiency problem at the price, however, of complications in
the required atomic level scheme or field mode structure.
An adiabatic transfer, mapping atomic Zeeman states pop-
ulations onto a cavity field [9] can in principle prepare any
superposition of Fock states. Photons can be “pumped”
one by one from classical fields into the quantized cav-
ity mode by a single three-level atom [10]. This method,
which can be extended to generate an arbitrary superpo-
sition of Fock states, relies on a Raman transition scheme
involving four field modes.
In this letter, we propose a very simple way of generat-

ing a given photon-number state. It relies on a “minimal”
configuration involving a single two-level atom and only
two field modes, a “photon reservoir” prepared in a coher-
ent state and the quantum mode storing the Fock state.
This method is also of great practical interest, since it is
compatible with the properties of circular Rydberg states
and high Q superconducting cavities used in microwave
cavity-QED experiments [11–14]. The complex atom and
field energy level structures required by the previously
proposed methods could not be implemented in this con-
text. Moreover, our method can be straightforwardly gen-
eralized to prepare highly non-classical superpositions of
an arbitrary Fock state with the vacuum.
The atom, whose resonant frequency is controlled by

Stark effect, crosses the cavity while interacting
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Fig. 1. Sketch of the proposed experimental set-up.

alternatively with the two modes. An adiabatic process
is used to excite efficiently the atom in the “classical”
coherent field. This excitation is then deposited in the
“quantum” field.

The proposed experimental set-up is sketched in Fig-
ure 1. It is the one already used in previous experiments
[11–14]. A single circular Rydberg atom is prepared in
box B into level e (principal quantum number 51) at a
given time by excitation of the atomic beam effusing from
oven O. The atomic velocity v is selected prior to the Ryd-
berg state excitation in zone V. It can be adjusted between
100 and 400 m/s. The atomic position is therefore known
at any time during the atomic transit through the set-up.
The atom interacts with the superconducting cavity C,
made of two spherical niobium mirrors in a Fabry-Perot
configuration.

The cavity sustains two orthogonally polarized TEM900
modes, M1 and M2. The slight ellipticity of the mirrors
lifts their degeneracy. The frequencies are ω for M1
and ωcl > ω for M2. The frequency difference,
∆/2π = (ωcl − ω)/2π, ranges from 100 kHz to 2 MHz
for different mirror pairs presently available. Both modes
share the same Gaussian geometry, with a w = 6 mm
waist. A classical source S prepares initially in M2 a co-
herent field |α〉 with an average photon number n = |α|2,
while M1 is left empty (the cavity temperature, 0.6 K,
makes thermal radiation negligible). Both modes are close
to resonance with the transition between e and the lower
circular state g (principal quantum number 50, e → g
transition frequency 51.099 GHz). A time-varying electric
field F (t) applied between the two mirrors is used to tune
alternatively the atomic frequency ωat by Stark effect on
resonance with each mode. After its interaction with the
cavity, the atom is finally detected downstream in one of
the field-ionization detectors De (for level e) or Dg (for
level g).

The time sequence is depicted in Figure 2. The atom,
injected into the cavity in its excited state |e〉, is tuned
to resonance with M1 (ωat = ω) during the time required
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Fig. 2. Scheme of the proposed timing. The atomic transition
frequency, controlled through the Stark field F (t), is plotted
pictorially versus time. It is tuned alternatively to modes M1
and M2, separated by ∆/2π.

to undergo a π pulse. The single photon Rabi frequency
Ω at cavity center is 50 kHz. The actual interaction time
with M1 differs from π/Ω however because the atom ex-
plores the Gaussian profile of the field. This time is per-
fectly determined from the knowledge of the atomic trajec-
tory. When one photon exactly is deposited in the cavity
(combined atom-cavity-mode-M1 state |g, 1〉), the atomic
resonance frequency is detuned suddenly by 2∆ to reach
ωat = ωcl + ∆. The action of the classical field in M2 on
the atomic state during this diabatic switching is negligi-
ble. By slowly decreasing then the atomic frequency ωat
and passing through the resonance ωat = ωcl, the atom is
adiabatically transferred into state e. The combined atom-
mode M1 state is then |e, 1〉.

The resonant interaction (ωat = ω) resumes for a
shorter interaction time (taking into account the fact that

the Rabi frequency in a single photon field is
√
2 larger

than in the vacuum [11]). The whole sequence can be re-
peated as many times as required to pump more photons
in M1. At each resonant step with M1, the variation of
the Rabi frequency with the photon number is taken into
account. Finally, the atom exits the cavity, leaving M1 in
a Fock state. In principle, we may reach an arbitrary pho-
ton number. There are however practical limitations on
the accessible interaction times. First, one cannot select
an arbitrarily small atomic velocity. Second, the loss of
a photon due to cavity relaxation tends to blur the final
state at long times. The total interaction time must be
kept much shorter than the photon lifetime in the cavity.

Let us now discuss the parameter optimization tak-
ing into account the experimental constraints. The adia-
batic transfer is efficient provided Ω2clτad/∆ > 1 where τad
is the adiabatic passage time (see Fig. 2) and
Ωcl = Ω

√
n+ 1 the atom-classical field average coupling

at resonance. The frequency mismatch ∆ is determined
by the cavity geometry. To keep τad as short as possi-
ble, we need thus a large coupling Ωcl and hence a large
average photon number in M2. This strong field in M2
may influence the resonant interaction between the atom
and M1. To keep this effect small, we must fulfill the
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Fig. 3. Atom-cavity states weights versus time for a prepa-
ration sequence yielding a three photon Fock state. The cen-
tral times of the adiabatic passage sequences are indicated by
arrows. Note the oscillations of the states populations around
these times, when the atom is at resonance with mode M2. The
target state |g, 3〉 is reached with a 0.92 probability. Atomic ve-
locity is 200 m/s.

condition Ωcl/∆ � 1. A satisfactory compromise can be
found for the microwave cavity setup used in our labora-
tory. Let us assume a frequency mismatch ∆ = 4π MHz.
We can choose Ωcl in the 1 rad/µs range, corresponding
to n =30-40. With these parameters, the adiabatic pas-
sage is efficient for τad = 10 µs. For an atomic velocity
v = 200 m/s, the total interaction time in the cavity is
about 40-50 µs. During this time we can realistically feed
up to 3 photons into the mode.

The efficiency of the adiabatic rapid passage in the
limited interaction time τad can be further increased by
tailoring the time variation of the atomic frequency. In-
stead of a linear variation, depicted in Figure 2 for sake
of clarity, we have determined, through numerical simula-
tions, that a cubic variation of the detuning versus time
(ωat − ωcl = ∆(1 − 2(t − t0/τad)3), t0 corresponding to
the beginning of the adiabatic passage sequence) provides
much better results. The probability of atomic excitation,
only 90% for the linear variation, increases up to close to
100% in this case, which could be easily implemented ex-
perimentally through a proper control of the Stark electric
field F (t).

We have checked the scheme by complete numerical
simulations. The evolution of the amplitudes of the dif-
ferent states are shown in Figure 3 (ideal lossless cavity,
atomic velocity 200 m/s). The states |g, 1〉, |e, 1〉, |g, 2〉,
|e, 2〉 and |g, 3〉, are reached successively with weights
97.1%, 94%, 93.6%, 92% and finally 91.5%. This corre-
sponds to an almost perfect preparation of a Fock state.
The purity of the state can be further increased by using
the information provided by the atomic detection. With a
91.8% probability, the atom is counted in Dg. In this case,
the field is projected onto a state containing the |3〉 Fock
state with 99.7% weight. The scheme produces an almost
perfect Fock state in a single conditional measurement.

The total flight time of the atom in the apparatus is
in the 300-400 µs range. The atomic radiative lifetime
(30 ms) plays therefore no role in the experiment. The
photon lifetime in the cavity Tr, up to about 3 ms (cav-
ity quality factor in the 109 range), might introduce non-
negligible dissipation effects. To estimate them, we per-
formed a Monte-Carlo wavefunction simulation [15].

Random quantum jumps corresponding to photon loss
from the cavity are introduced into the coherent evolution.
The calculated final probabilities of the atom-cavity states
are summarized in Table 1 (first line: no relaxation with
the conditions described above, second line: cavity mode
damping time 3 ms). Relaxation reduces the target state
|g, 3〉 weight down to 85.7%. Accordingly, the probability
of the |g, 2〉 state is increased, from 0.1% in the absence
of relaxation, up to 4.8%. The method is therefore quite
robust against dissipation. Note that the sum of the |g, 2〉
and |g, 3〉 states weights corresponds approximately to the
91.5% weight of state |g, 3〉 in a relaxation-free evolution,
reflecting the fact that the probability of two consecutive
photon losses during the evolution is negligible.

The Monte-Carlo method is also well suited to account
for imperfections in the atomic position determination. In
fact, the atomic position is known inside C with a 0.5 mm
accuracy at best, due to the size of the excitation lasers
and to the residual velocity dispersion. The coupling to
the cavity at a given time for different realizations of the
experiment, slightly blurring the final field state. The final
weights taking into account this effect are given in the
third line of Table 1. The weight of the target state |g, 3〉
is reduced further down to 76.5%.

Once again, the information gained by detecting the
internal state of the atom in De or Dg, can be used to
improve the quality of the final state. Table 2 gives, in
the first column, the probability to detect the atom in
state g. The second column gives the 3 photon Fock state
weight in the cavity, conditioned to the detection of the
atom in g. Even all noises included, the probability of the
three-photon Fock state is as high as 88.8%.

A simple modification of the set-up can lead to the
production of an highly non-classical field state, quantum
superposition of the vacuum with an n photons Fock state.
Let us consider the circular Rydberg level i with princi-
pal quantum number 52. It is coupled to e by a dipole
transition, whose frequency is very different from the one
of the e → g transition, nearly resonant with the cavity.
Before entering in C, the atom is prepared in a superposi-
tion (|e〉+ |i〉)/

√
2 through the interaction with a resonant

classical microwave field contained in a low-Q cavity R1
(not shown in Fig. 1 for sake of simplicity). The Fock state
preparation time sequence is then applied to the atom in
the high Q cavity. The linearity of the evolution leads to
a superposition of two final states. The atom has either
remained in the non-resonant level i, leaving the cavity
empty, or evolved from e to g, feeding an n photon Fock
state in M1. A last adiabatic passage in mode M2 can then
be used before the atom exits the cavity to promote again
the atom in level e. The atom+cavity state at the end of
the interaction is thus: (|e, n〉+ |i, 0〉)/

√
2.
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Table 1. The probabilities (in percentage) of the atom-cavity states at the end of the evolution. The three lines correspond
to evolution without dissipation, with dissipation only (cavity damping time Tr = 3 ms), and with dissipation and position
dispersion (0.5 mm).

|g, 0〉 |e, 0〉 |g, 1〉 |e, 1〉 |g, 2〉 |e, 2〉 |g, 3〉 |e, 3〉

without dissipation 0.2 4.9 0.0 3.1 0.1 0.0 91.5 0.2

with dissipation only 0.6 5.1 0.2 0.4 4.8 0.0 85.7 0.2

with position dispersion 1.2 6.7 3.6 3.6 4.8 3.4 76.5 0.2

Table 2. The probabilities (in percentage) of detecting the
atom in state |g〉 and the weight of the |3〉 Fock state in the
cavity, conditioned to the atomic detection in g. The three
cases of table I are considered.

|g〉 |g, 3〉

without dissipation 91.8 99.7

with dissipation 91.3 93.9

with all noises 86.1 88.8

A direct detection of the atomic state at the exit of
the cavity would project the field either on an n pho-
tons state or on vacuum. A field quantum superposition
can be preserved only if the information about the atomic
state in C is “erased”. This can be performed by mixing
again levels i and e after the interaction with C in another
low Q cavity R2 identical to R1. The atom undergoes in
R2 the unitary transformation |i〉 → (|i〉 + |e〉)/

√
2 and

|e〉 → (−|i〉 + |e〉)/
√
2. The atom-cavity state after R2 is

thus:

1

2
[|i〉(|0〉 − |n〉) + |e〉(|0〉+ |n〉)] . (1)

The detection of the atom in level e or i projects the field
on the state (|0〉+ |n〉)/

√
2 or (|0〉 − |n〉)/

√
2 respectively.

This state is analogous to the “amplitude Schrödinger
cat”, superposition of the vacuum and of a coherent state,
produced by a quantum switch arrangement [16]. Since it
implies a Fock state, the decoherence of such a mesoscopic
quantum superposition can be trivially calculated and in-
terpreted. The decoherence time is exactly Tr/n, even for
low n values. The escape of the first photon in the envi-
ronment is enough to determine with certainty whether
there is a non vanishing field in the cavity and to spoil
the quantum superposition [17]. This law is much simpler
than the one describing the decoherence of a superposi-
tion of coherent states, especially for low average photon
numbers. Observing the decoherence of such a state would
be an interesting goal. The coherence of the superposition
in C could be tested by a direct mapping of the field’s
Wigner function [18].
We have proposed a realistic scheme to prepare with a

high accuracy a Fock state in a cavity. The scheme could
reach photon numbers of about 5 by using slow atoms in
the beam. The corresponding experiment is in progress
in our laboratory. Extension to the generation of highly
non-classical “Schrödinger cat” states is also possible.
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